Omaväärtus ja omavektor

Allikas: testwiki
Mine navigeerimisribale Mine otsikasti

Mall:Keeletoimeta Lineaaralgebras maatriksi A omavektor (inglise keeles eigenvector) on mittenull vektor, kus maatriksi A ja vektori korrutis on võrdne skalaari λ ja vektori korrutisega. Seda skalaari nimetatakse omaväärtuseks.[1] Omaväärtused on laialdaselt kasutused erinevates valdkondades, näiteks informatsiooniteoorias, ehituses, stereo süsteemides, elektrilises ning mehaanilises inseneerias.[2]

Omaväärtus rahuldab võrrandit Ax=λx, mille saab ümber kirjutada kujule (AλI)x=0. Kuna omavektor on mittenull, saame leida omaväärtuse lahendades karakteristliku võrrandi |AλI|=0. Maatriksi A karakterisliku võrrandi kõikide lahenduste hulka nimetatakse A spektriks. Teisest küljest, kui maatriksil A on λ teada, saab leida omavektori lahendades võrrandi (AλI)z=0.[1]

Siinses transformatsioonis on sinine vektor omavektor, kuna ta ei muutu. Praegusel juhul omavektori pikkus jääb samaks, seega omaväärtus on 1.

Mona Lisa illustratsioon annab hea näite. Pildil saab igat punkti kohelda kui vektorit keskpunktist. Näites kasutatakse shear teisendust, kus x-teljest kõrgemaid punkte nihutatakse paremale ning madalamaid vasakule, kusjuures x-telg ise jääb samaks. Suvaline x on omavektor siis ja ainult siis, kui ta on x-teljega kolineaarne, kuna x-telg jääb pärast transformeerimist konstantseks.

Omadused

  1. Maatriksitel A ja AT on võrdsed omaväärtused.
  2. Ruutmaatriksi A omaväärtuste summa on võrdne A jäljega ning korrutis determinandiga
  3. Sümmeetrilise maatriksi astak võrdub tema mittenulliliste omaväärtuste arvuga.
  4. Kui λ on maatriksi A omaväärtus, siis λk on maatriksi Ak omaväärtus.
  5. Olgu B n×n-maatriks, D diagonaalmaatriks, mille peadiagonaalil paiknevad maatriksi B omaväärtused ning L n×n-maatriks, mis koosneb maatriksi B omaväärtustele vastavatest omavektoritest. Kui L on mittesingulaarne, siis on maatriks B avaldatav kujul B=LDL1.[1]

Arvutus

Omaväärtuste arvutamine on teoorias ja praktikas väga erinev. Klassikaliselt leitakse enne omaväärtus ning seejärel omavektorid iga omaväärtuse kohta. On aga leitud, et see viis ei anna häid tulemusi ujukomaarvudega nende ebatäpsuse tõttu.

Omaväärtused

Maatriksi A omaväärtused saab arvutada leides lahendused karakteristlikule võrrandile. See on lihtne 2×2 maatriksite korral, aga muutub komplekssemaks maatriksi suuruse kasvades.

Teoorias, karakteristliku võrrandi kordajad saab arvutada täpselt, kuna nad on maatriksi elementide korrutiste summa ja leiduvad algoritmid, mis suudavad leida kõik nullkohad suvalisele polünoomile vajaoleval täpsusel.Mall:Sfn See lähenemine aga ei anna praktikas täpseid tulemusi, kuna ujukomaarvude kasutamine tekitab ümardusvigu ning nullkohad võivad olla sensitiivsed väikestele muudatustele.Mall:Sfn Isegi täisarvuliste maatriksite puhul on arvutus mittetriviaalne, kuna summad on väga pikad. Determinandi arvutamiseks on vaja n×n maatriksil vaja n! korrutustehet.

Omavektorid

Kui täpne omaväärtus on teada, saab arvutada vastava omavektori leides lahendused võrrandile Ax = λx, mis on siis võrrandsüsteem teatud kordajatega. Näiteks, kui on teada, et maatriksi

A=[4163]

omaväärtus on 6, saame leida omavektorid lahendades võrrandi Av=6v:

[4163][xy]=6[xy]

See maatriksite võrrand on ekvivalentne kahele lineaarsele võrrandile:

{4x+y=6x6x+3y=6y Mall:Spaces ehk Mall:Spaces {2x+y=06x3y=0

Mõlemad võrrandid lihtsustuvad y=2x. Seega iga vektor [a2a]T, kus a0 on mingi suvaline reaalarv, on maatriksi A omaväärtusega λ=6 omavektor.

Iteratiivne meetod

Arvutitel kasutatakse vastupidist meetodit, kus algul leitakse omavektorid ning seejärel nendele vastavad omaväärtused. Lihtsaim algoritm alustab suvalise vektoriga ning korrutab seda maatriksiga korduvalt. Kui seda piisavalt kaua teha, läheneb see vektor selle maatriksi omavektorile. Sellele ekvivalentselt saab vektorit korrutada maatriksiga (AμI)1, mille tagajärjel läheneb see vektor omavektorile, mis vastab omaväärtusele, mis on lähim arvule μ.

Kui 𝐯 on ligikaudne maatriksi A omavektor, siis vastava omaväärtuse saab leida valemiga

λ=𝐯*A𝐯𝐯*𝐯

kus 𝐯* on maatriksi 𝐯 kaasmaatriks.

Kasutus

Pilditöötluses on võimalik arvutada omanägu (inglise keeles eigenface), mis on hulk omavektoreid, mis on kasuks näotuvastuses.[3] Need omavektorid on arvutatud tõenäosusjaotuse kovariantsimaatriksist üle kõrgdimensionaalse näopiltide vektorruumi. Omanäod moodustavad ise kõigi kovariantsimaatriksi konstrueerimisel kasutatud piltide baaside hulga. See vähendab dimensiooni, võimaldades esindada algseid treeningkujutisi väiksemate aluspilte baaside hulgana. Klassifikatsiooni saab sel juhul teha baaside hulkade peal.

Google'i PageRanki algoritm kasutab omaväärtusi ja omavektoreid, et arvutada võtmesõnale vastava lehekülje tõenäosust.[4]

Viited

Mall:Viited