Difraktsioon

Allikas: testwiki
Redaktsioon seisuga 4. august 2024, kell 00:58 kasutajalt imported>Włodzimierz Lewoniewski (UEP) (Tsitaadi mall – uus parameeter (doi:10.1098/rstl.1804.0001).)
(erin) ←Vanem redaktsioon | Viimane redaktsiooni (erin) | Uuem redaktsioon→ (erin)
Mine navigeerimisribale Mine otsikasti
Arvuti genereeritud intensiivsuse muster, mis on tingitud difrakteerumisest läbi ruudukujulise ava
Laserkiir, mis on lastud läbi difraktsioonivõre
Kahe pilu difraktsioonist interferentsimustri genereerimine
Kahe pilu difraktsioonist interferentsimustri arvutusmudel
Osaliselt difraktsiooni tõttu võime näha ämblikuvõrke värvilisena[1]

Difraktsioon on füüsikaline nähtus, mille korral laine paindub ümber takistuste või läbib tõkkes oleva väikese ava.[2]. Difraktsioon on eriti märgatav siis, kui tõkke või selles oleva ava mõõtmed on lähedased lainepikkusele. Difraktsiooniline kõrvalekaldumine (paindumine) sirgjoonelisest levimisteest ei tulene peegeldumisest, murdumisest ega hajumisest.[3]

Sarnane nähtus esineb ka siis, kui valguslaine levib läbi aine, millel on levimissihis muutuv murdumisnäitaja, või kui helilaine levib läbi muutliku akustilise impedantsiga keskkonna. Difraktsioon esineb iga liiki lainete puhul, k.a helilainete, veelainete, elektromagnetlainete, nagu näiteks nähtava valguse ja raadiolainete korral. Ka füüsilistel objektidel on lainelised omadused (aatomtasandil), difraktsioon esineb ka mateeria korral ning seda uuritakse kvantmehaanika seaduspärasustega. Itaalia teadlane Francesco Maria Grimaldi võttis kasutusele sõna difraktsioon ja oli esimene, kes tegi 1665. aastal selle nähtuse täpsed vaatlustulemused.[4][5]

Richard Feynman on öelnud, et

"keegi ei ole kunagi suutnud defineerida interferentsi ja difraktsiooni erinevust rahuldavalt. See on lihtsalt kasutamise küsimus ja nende vahel ei ole mingit kindlat füüsikalist erinevust."[6]

Ta pakkus välja, et kui katses on ainult kaks allikat nagu Youngi kahe pilu katses, kutsuda nähtust interferentsiks, aga suurema arvu allikate korral difraktsiooniks.

Difraktsiooni nähtused on kõige suuremad siis, kui takistuse/ava suurus on umbes samas suurusjärgus laine lainepikkusega. Kui takistavas objektis on mitu lähedal asuvat ava, siis võivad muutuda pärast selle läbimist laine muster ja intensiivsus. See juhtub superpositsiooni tõttu. Tekib interferents, mille korral erinevad laine osad pärast objekti läbimist jõuavad vaatlejani, pärast erineva teepikkuse läbimist (vt difraktsioonivõre).

Difraktsiooni formalismi saab kirjeldada ka nii, et lained levivad piiratud ulatuses vabas ruumis. Kasutades difraktsiooni võrrandeid, saab uurida laserikiire profiili laienemist, radariantenni kiire kuju ja vaatevälja ning ultraheliandurit.

Näited

Difraktsiooninähtuseid on tihti näha ka igapäevaelus. Üks difraktsiooni hästi iseloomustav näide on seotud valgusega; näiteks CD või DVD tihedalt pakitud rajad käituvad kui difraktsioonivõre, mis moodustab tuttava vikerkaaremustri. Seda teadmist kasutades saab välja töötada võre, mille struktuur vastab oodatule; nagu näiteks krediitkaartidel asuvad hologrammid. Difraktsioon atmosfääris tekib väikeste osakeste tõttu, mis saavad tekitada nähtava ereda ringi ümber valgusallika nagu näiteks Päikese või Kuu. Kõik need nähtused on põhjustatud valguse lainelistest omadustest.

Difraktsiooni esineb kõikide lainetüüpide korral. Ookeanilained interfereeruvad ümber kaide ja teiste takistuste. Helilained saavad interfereeruda ümber objektide. Selle tõttu on võimalik kuulda kedagi kutsumas isegi kui ta peidab ennast puu taga.[7] Difraktsioon on probleemiks mitmete tehniliste rakenduste juures; see seab teoreetilise piiri kaamera, teleskoobi või mikroskoobi lahutusvõimele (resolutsioonile).

Ajalugu

Thomas Youngi käsijoonis kahe-pilu difraktsioonist. T. Young esitles seda Londoni Kuninglikus Seltsis 1803. aastal

Valguse difrakteerumise nähtust uuris ja kirjeldas põhjalikumalt esimeena Francesco Maria Grimaldi, kes ühtlasi lõi ka mõiste difraktsioon ladinakeelsest sõnast diffringere, mis tähendab 'tükkideks purunemist', vihjates sellega valguse murdumisele erinevatesse suundadesse. Grimaldi vaatluse tulemused avaldati postuumselt 1665. aastal.[8][9][10] Isaac Newton uuris neid nähtusi ning omistas need valguskiirte muutumatusele. James Gregory (16381675) uuris linnusule tekitatud difraktsioonimustreid. See oli sisuliselt difraktsioonivõre tekitatud nähtuste esmakordne uurimine.[11] Thomas Young korraldas 1803. aastal eksperimendi, kus tutvustas kahest lähedal asetsevast pilust tingitud interferentsi.[12][13] Thomas Young selgitas vaatlustulemusi erinevatest piludest väljuvate lainete interferentsiga ja järeldas, et valgus peab levima lainetena. Augustin-Jean Fresnel tegi põhjalikumaid uuringuid ja arvutusi difraktsiooninähtustest, mis avaldati 1815.[14] ja 1818. aastal.[15] Augustin-Jean Fresnel toetas sellega märkimisväärselt valguslaine teooriat, mida oli uurinud Christiaan Huygens[16] ja taaselustanud Young, vastandades teooriat Newtoni valgusosakeste teooriale.

Mehhanism

Foto difraktsioonist ühe pilu korral ringikujulises simulatsioonivahendis

Difraktsioon on põhjustatud lainete levimise iseärasustest; seda kirjeldavad Huygensi-Fresneli printsiip ja lainete superpositsiooniprintsiip. Lainete levimist saab visualiseerida, kui arvata iga lainefrondi punkt uueks sfäärilise sekundaarlaine allikaks. Laine levimisteekonna muutus igas järgnevad alampunktis on nende sekundaarlainete summa. Vastavate lainete summa on kindlaks määratud nende suhteliste faaside ja osalainete amplituudidega, nii et summeeritud amplituudi väärtus võib varieeruda nullist kuni osalainete üksikute amplituudide summani. Sellest tulenevalt on tavaliselt difraktsiooni mustritel maksimumi ja miinimumi seeriad.[17]

Difrakteerunud välju on võimalik matemaatiliselt kirjeldada mitmete analüütililiste mudelite abil, sealhulgas Kirchhoffi-Fresneli difraktsioonivõrrandiga, mis on tuletatud lainevõrrandist, Fraunhoferi difraktsiooni lähendiga Kirchhoffi võrrandist, mis kehtib kaugväljadele ning Fresneli difraktsiooni lähendiga, mis kehtib lähiväljadele. Enamikku konfiguratsioone ei ole võimalik analüütiliselt lahendada, kuid lõpliku elemendi meetodi ning piirelemendi meetodi abil on võimalik välja arvutada numbrilisi lahendusi.

Difraktsiooninähtusi on võimalik kvalitatiivselt mõista, võttes arvesse, kuidas individuaalsete sekundaarlainete allikate faasid varieeruvad. Konkreetsemalt öeldes, kuidas muutuvad tingimused, mille korral faasi erinevus on võrdne poole tsükliga. Sel juhul vastavad lained tühistavad teineteist.

Difraktsiooni on lihtsaim kirjeldada juhul, kui nähtust on võimalik kujutada kahemõõtmeliselt. See kehtib näiteks vee lainetuse kohta, kuna veelained levivad vaid veepinnal. Valguse puhul on tihti võimalik eirata üht mõõdet juhul, kui difrakteeruv objekt ulatub mõõtme suunda märkimisväärselt suurema pikkusega, kui lainepikkus. Probleemi kolmemõõtmelist olemust tuleb arvesse võtta, kui valgus paistab läbi väikeste ringikujuliste avauste.

Valguse difraktsioon

Difraktsioon ühe pilu korral

Punase laserikiire difrakteerumine

Lõpmata väikese laiusega pilu valgustamisel difrakteerub valgus ringikujuliste lainete jadaks ja lainefront, mis pilust ilmub, on ühtlase intensiivsusega silindriline laine.

Kui valgustatav pilu on laiem, kui temale langeva valguse lainepikkus, siis tekib pilust allavoolu olevas ruumis valguse interferents. Nähtust on võimalik seletada, kui eeldada, et pilul on suur hulk punktallikaid, mis on terve pilu laiuses võrdselt jaotunud. Lihtsustamise mõttes saab käsitleda valgust ühe lainepikkuse jaoks. Kui pilule langev valgus on monokromaatiline, siis on kõigil punktallikatel sama faas. Pilust allavoolu jäävas punktis koosneb valgus iga punktallika panusest ning kui panuste suhtelised faasid erinevad 2π võrra või enam, siis saame leida difrakteerunud valguse miinimumi ja maksimumi. Sellised faasierinevused on tingitud difrakteeruvate valguskiirte vastavasse punkti jõudmiseks läbitud teekonna pikkuste erinevusest.

Nurka, kus difrakteerunud valguse esimene miinimum on saavutatud, on võimalik leida järgneva arutluskäiguga. Pilu ülemise servaga piirnevalt valguse allikalt tulev valgus interfereerub destruktiivselt pilu keskelt tuleva valgusega juhul, kui teekonna erinevus nende vahel on võrdne λ/2. Sarnaselt, valguse allikas, mis asub pilu ülemisest äärest veidi allpool interfereerub destruktiivselt pilu keskmest veidi allpool asuva valgusallikaga. Sama arutluskäik kehtib liikudes piki tervet pilu kõrgust ning sellest järeldub, et terve pilu destruktiivse interferentsi tekketingimused on samad, mis kahe teineteisest poole pilu laiuse kaugusel asuva kitsa pilu vahel tekkiva destruktiivse interferentsi tekke tingimused. Teekonna erinevus väljendub dsin(θ)2 nii et minimaalne intensiivsus ilmneb nurgal θmin, mis on antud kui:

dsinθmin=λ

kus

  • d on pilu laius,
  • θmin valguse langemise nurk, kus ilmneb minimaalne intensiivsus
  • λ on valguse lainepikkus

Kui kujutada, et pilu on jaotatud neljaks, kuueks, kaheksaks osaks jne, siis miinimumid ilmnevad nurkadel θn, antud kui

dsinθn=nλ

kus

  • n nullist erinev täisarv.

Difraktsioonimustri maksimumi leidmiseks puuduvad lihtsad argumendid. Intensiivsuse profiili saab arvutada kasutades Fraunhoferi difraktsioonivõrrandit:

I(θ)=I0sinc2(dλsinθ)

kus

  • I(θ) on intensiivsus vastava nurga all,
  • I0 on langeva valguse intensiivsus, ning
  • sinc funktsioon on antud kui sinc(x) = sin(πx)/(πx) kui x ≠ 0, ja sinc(0) = 1

Antud analüüs kehtib ainult kaugväljade puhul, s.t et kaugustel, mis on palju pikemad, kui pilu laius.

Punase laserikiire difrakteerumine kahe vertikaalse pilu ning viie horisontaalse pilu korral
Punase laserikiire difraktsioon, kasutades difraktsioonivõret
Läbi 150 pilu suunatud 633 nm laseri difraktsioonimuster

Difraktsioonivõre

Difraktsioonivõre on korrapärase mustriga optiline komponent. Läbi võre difrakteerunud valguse kuju sõltub elementide struktuurist ja elementide arvust. Kõigil võredel on intensiivsuse maksimum nurkadel θm, mida väljendab võre võrrand:

d(sinθm+sinθi)=mλ

kus

  • θi on valguse langemise nurk,
  • d on võrekonstant
  • m positiivne või negatiivne täisarv

Läbi võre difrakteerunud valgus on leitav igalt võreelemendilt difrakteerunud valguse summeerimisega ning see on olemuslikult difraktsioonimustri ja interferentsimustri konvolutsioon.

Apertuur

Punktallikast eralduval lainel on amplituud ψ kohas r, mis on antud punktallika sagedusdomeeni lainevõrrandi lahendist (Helmholtzi võrrand),

2ψ+k2ψ=δ(𝐫)

Kus δ(𝐫) on kolmemõõtmeline deltafunktioon. Deltafunktsioonil on vaid radiaalne sõltuvus, mistõttu Laplace'i operaator sfäärilises koordinaatsüsteemis lihtsustub:

2ψ=1r2r2(rψ)

Otsese asendusega on võimalik selle võrrandi lahendit leida skalaarse Greeni funktsioonina, mis sfäärilisse koordinaatsüsteemi asetatuna (ning kasutades füüsikalist aja konventsiooni eiωt) on:

ψ(r)=eikr4πr

Selline lahend eeldab, et deltafunktsiooni allikas asub koordinaatide nullpunktis. Kui deltafunktsiooni allikas asub vabalt valitud punktis, mida tähistatakse vektoriga 𝐫 ning väljapunkt asub punktis 𝐫, siis võib kujutada skalaarset Greeni funktsiooni (vabalt valitud allika asukoha jaoks) kui:

ψ(𝐫|𝐫)=eik|𝐫𝐫|4π|𝐫𝐫|

Järelikult, kui elektriväli Einc(x,y) langeb avale, siis ava distributsioonist tekitatud väli väljendub pindintegraalina:

Ψ(r)apertureEinc(x,y)eik|𝐫𝐫|4π|𝐫𝐫|dxdy
Fraunhoferi regiooni väljade arvutamine

kus avas olevat punktallikat iseloomustab vektor:

𝐫=x𝐱^+y𝐲^

Kaugväljas, kus saab rakendada paralleelsete kiirte lähendit, on Greeni funktsioon esitatav kujul:

ψ(𝐫|𝐫)=eik|𝐫𝐫|4π|𝐫𝐫|

Lihtsustub kui:

ψ(𝐫|𝐫)=eikr4πreik(𝐫𝐫^)

Fraunhoferi regiooni välja avaldis muutub:

Ψ(r)eikr4πrapertureEinc(x,y)eik(𝐫𝐫^)dxdy,

Kuna

𝐫=x𝐱^+y𝐲^

ning

𝐫^=sinθcosϕ𝐱^+sinθsinϕ𝐲^+cosθ𝐳^

Siis Fraunhoferi regiooni välja avaldis tasandilisest avast muutub:

Ψ(r)eikr4πrapertureEinc(x,y)eiksinθ(cosϕx+sinϕy)dxdy

Lastes:

kx=ksinθcosϕ

ning

ky=ksinθsinϕ

Siis Fraunhoferi regiooni väli tasandilisest avast saab Fourier' teisendus kuju:

Ψ(r)eikr4πrapertureEinc(x,y)ei(kxx+kyy)dxdy,

Fraunhoferi regioonis saab avaldisest ava distributsiooni ruumiline Fourier' teisendus. Aval rakendatav Huygensi printsiip väidab, et kaugvälja difraktsioonimuster on ava kujuga ruumiline Fourier' teisendus ning et see on paralleelsete kiirte lähenduse otsene kõrvalsaadus. See omakorda on identne ava tasandilistele väljadele tasandilise laine dekompositsiooni rakendamisega.

Laserikiire levimine

Laserikiire Gaussi profiili muutumise kiire levimise ajal määrab difraktsioon. Laseri väljundpeegel on ava ning järgneva kiire kuju määrab see ava. Järelikult, mida väiksem on väljundkiir, seda kiiremini ta hajub.

Paradoksaalselt on võimalik vähendada laserikiire hajuvust esmalt seda kumerläätse abil laiendades ning seejärel teise kumerläätse, mille fookus langeb kokku esimese kumerläätse fookusega, abil kiirt kalibreerides. Tulemuseks saadaval kiirel on suurem ava ja seetõttu ka väiksem hajuvus.

Difraktsiooni käitumismustrid

Difraktsiooni üldiselt iseloomustavad omadused:

  • Mida väiksem on difrakteeruv objekt, seda "laiem" on tulenev difraktsioonimuster ja vastupidi. (Täpsemalt öeldes kehtib see nurga siinustele.)
  • Difraktsiooni nurgad on skaleerimise korral muutumatud – need sõltuvad vaid lainepikkuse ja difrakteeruva objekti suhtest.
  • Kui difrakteeruval objektil on perioodiline struktuur, näiteks difraktsioonivõre puhul, muutuvad objekti omadused olulisemaks.

Viited

Mall:Viited

  1. Viitamistõrge: Vigane <ref>-silt. Viide nimega ZBZ7P on ilma tekstita.
  2. Viitamistõrge: Vigane <ref>-silt. Viide nimega 3g31G on ilma tekstita.
  3. ENE 2. köide, 1987
  4. Viitamistõrge: Vigane <ref>-silt. Viide nimega JEHjQ on ilma tekstita.
  5. Viitamistõrge: Vigane <ref>-silt. Viide nimega 2osSb on ilma tekstita.
  6. Viitamistõrge: Vigane <ref>-silt. Viide nimega jk8WQ on ilma tekstita.
  7. Viitamistõrge: Vigane <ref>-silt. Viide nimega oUXYY on ilma tekstita.
  8. Viitamistõrge: Vigane <ref>-silt. Viide nimega peTpC on ilma tekstita.
  9. Viitamistõrge: Vigane <ref>-silt. Viide nimega 7khNY on ilma tekstita.
  10. Viitamistõrge: Vigane <ref>-silt. Viide nimega rtfaw on ilma tekstita.
  11. Viitamistõrge: Vigane <ref>-silt. Viide nimega iyIsp on ilma tekstita.
  12. Viitamistõrge: Vigane <ref>-silt. Viide nimega lqTZL on ilma tekstita.
  13. Viitamistõrge: Vigane <ref>-silt. Viide nimega 4tY9k on ilma tekstita.
  14. Viitamistõrge: Vigane <ref>-silt. Viide nimega dtZPx on ilma tekstita.
  15. Viitamistõrge: Vigane <ref>-silt. Viide nimega mXJ8k on ilma tekstita.
  16. Viitamistõrge: Vigane <ref>-silt. Viide nimega nv5by on ilma tekstita.
  17. Viitamistõrge: Vigane <ref>-silt. Viide nimega YNlQr on ilma tekstita.