Sammfunktsioon
Funktsiooni nimetatakse sammfunktsiooniks, kui seda saab kirjeldada lõpliku arvu intervallide karakteristlike funktsioonide lineaarkombinatsioonina.[1]

Definitsioon
Funktsioon on sammfunktsioon, kui seda kirjeldab summa
kus on intervallide arv, , on intervall ja on hulga karakteristlik funktsioon.
Funktsiooni nimetatakse hulga karakteristlikuks funktsiooniks[2], kui
Sammfunktsiooni intervallidel järgnevad omadused:
- Intervallid on paarikaupa lõikumatud ehk ; ;
- : .
- Intervallide ühisosa katab terve reaaltelje ehk
Kui need omadused ei kehti, on võimalik funktsioon ümber kirjutada. Näiteks funktsiooni
saab kirjutada ka
- .
Omadused
- Kahe sammfunktsiooni summa ja korrutis on sammfunktsioon. Sammfunktsiooni korrutamine reaalarvuga annab samuti sammfunktsiooni.[1]
- Sammfunktsiooni määratud integraal annab tükiti pideva funktsiooni.[1]
Näited

- Konstantne funktsioon on lihtsaim näide sammfunktsioonist. Antud juhul on funktsioonil ainult üks intervall .
- Märgifunktsioon on lihtsaim mittekonstantne sammfunktsioon.
- Heaviside'i funktsiooni väärtus on negatiivsete arvude puhul 0, nulli puhul 0,5 ja positiivsete arvude puhul 1.[3] See funktsioon leiab kasutust süsteemide sammkoste määramisel. Näiteks süsteemi sisendile konstantse pinge rakendamist mingiks ajaühikuks kirjeldab valem , kus on pinge rakendamise alghetk ja on pinge rakendamise lõpphetk. [4]