Implikatsioon

Allikas: testwiki
Redaktsioon seisuga 25. veebruar 2024, kell 19:23 kasutajalt imported>MamboBot (Parandasin 1 viitemallis vigase parameetri)
(erin) ←Vanem redaktsioon | Viimane redaktsiooni (erin) | Uuem redaktsioon→ (erin)
Mine navigeerimisribale Mine otsikasti
Venn diagram of the truth function of the material conditional Mall:Nowrap The circle on the left bounds all members of set A, and the one on the right bounds all members of set B. The red area describes all members for which the material conditional is true, and the white area describes all members for which it is false. The material conditional differs significantly from a natural language's "if...then..." statement. It is only false when both the antecedent A is true and the consequent B is false

Implikatsioon ehk materiaalne implikatsioon on tõeväärtuste algebras ehk loogikaalgebras binaarne tehe, mille tulem on väär parajasti siis, kui tehte esimene operand on tõene ja teine operand on väär.[1]

Implikatsiooni saab tähistada järgnevalt:

  1. 𝑝 ⊃ 𝑞 (Seda sümbolit kasutatakse ka alamhulga-ülemhulga seose tähistamiseks hulgateoorias);
  2. 𝑝 ⇒ 𝑞
  3. C𝑝𝑞 (kasutades poola kuju)

Ülal tähistatud implikatsioonitehete juures kutsutakse lausemuutujaid järgmiselt:

  • p on implikatsiooni eeldus (ehk antetsedent ehk alus) ja
  • q on implikatsiooni järeldus (ehk konsekvent ehk tagajärg).[1]

Klassikalises loogikas on lausearvutuse valem pq samaväärne tehtega ¬(p¬q) ning De Morgani seadust kasutades on see ekvivalentne tehtega ¬pq.[2]

Loomulikus keeles vastab implikatsiooni tehtele kõige lähedamalt lausekonstruktsioon "kui ..., siis ...". Nt "Kui täna on esmaspäev, siis homme on teisipäev."[3]

Definitsioonid

Loogikutel on erinevad vaated materiaalse implikatsiooni olemusest ja erinevad lähenemised selle kirjeldamiseks.[4]

Boole'i funktsioonina

Klassikalises loogikas on tehe Mall:Gaps loogiliselt ekvivalentne lausega: mitte p ja q eitus korraga. Seega on tehe Mall:Gaps väär parajasti siis, kui p on tõene ja q on väär. Samal põhjusel on Mall:Gaps tõene siis ja ainult siis, kui p on väär või q on tõene (või mõlemad korraga). Seega on → funktsioon, mis võtab argumendiks tõeväärtuste paari p, q ning viib selle vastavusse tõeväärtusega Mall:Gaps, mille tõeväärtus sõltub vaid argumentide tõeväärtustest. Seega sellist interpretatsiooni kutsutakse tõefunktsionaalseks.

Tõeväärtustabel

Implikatsiooni Mall:Gaps tõeväärtustabel on järgmine:

p q pq
TÕENE TÕENE TÕENE
TÕENE VÄÄR VÄÄR
VÄÄR TÕENE TÕENE
VÄÄR VÄÄR TÕENE

Tasub mainida, et Boole'i algebras võib tõeväärtusi tõene ja väär kujutada ka numbrite 1 ja 0 abil, vastavalt.

Omadused

Filosoofilised probleemid implikatsiooniga

Klassikalise loogika materiaalse implikatsiooni definitsiooni kasutades on võimalik koostada valemeid, mis on loogiliselt tõesed, kuid millest on intuitiivselt keeruline aru saada. Neid kutsutakse implikatsiooniparadoksideks. Need on näiteks:

p(qp),¬p(pq),(pq)(qp)

Idee paradoksidega tegelemiseks pakkus välja vene filosoof Ivan Jefimovitš Orlov, ja sellist loogika ülesehitust kutsutakse relevantsusloogikaks (relevance logic). Relevantsusloogikaid on mitmeid ning nendes nõutakse, et tehtest pq räägitaks ainult siis, kui on tagatud, et q tõestamise juures läheb vaja p-d.[1]

Viited

Mall:Reflist

Lisalugemine

Mall:Loogiline tehe