Plasmonid: erinevus redaktsioonide vahel

Allikas: testwiki
Mine navigeerimisribale Mine otsikasti
imported>InternetArchiveBot
Add 1 book for Verifiability (20241221sim)) #IABot (v2.0.9.5) (GreenC bot
 
(Erinevus puudub)

Viimane redaktsioon: 21. detsember 2024, kell 20:58

Plasmoniks nimetatakse plasma võnkumiste kvanti. Plasmon on kvaasiosake, mis on plasma võnkumise kvantiseerimise tulemus. Analoogina võib tuua footoneid ja foononeid, mis on vastavalt elektromangetvälja ja mehaanilise võnkumise kvandid. Seega on plasmonid metallides olevate vabade elektronide (mis on näide fermigaasist) tiheduse võnkumised. Plasmonid võivad sidestuda ka footonitega, moodustades nii uusi kvaasiosakesi plasmapolaritone.

Plasmonid jagunevad ruumiplasmoniteks, pinnaplasmoniteks ja plasmoniteks nanoosakestes.

Selgitus klassikalise füüsika abil

Klassikalises pildis võib plasmone ette kujutada vabade elektronidena, mis võnguvad metalli fikseeritud positiivsete ioonide suhtes. Lihtne näide plasma võnkumise kohta on elektrivälja paigutatud metallist osake. Olgu elektriväli suunatud paremale, seega vabad elektronid on liikunud vasakule, et tasakaalustada elektrivälja. Kui elektriväli kaob, hakkavad elektronid paremale liikuma omavahelise tõukumise ja positiivsete ioonidega tõmbumise tõttu. Elektronid hakkavad võnkuma edasi-tagasi positiivsete tuumade suhtes, kuni kogu energia on vastastikmõju tõttu hajunud. Plasmonid on sellise võnkumise kvandid. Kuna plasmonid on klassikalise plasma võnkumiste kvandid, saab suurema osa nende omadusi tuletada otse Mawxelli võrranditest.[1] Plasmonid saavad valguse energiat lokaliseerida väga väikesesse ruumipiirkonda. See omadus võib olla aluseks suurele hulgale uutele rakendustele.

Plasmonite roll metallide omaduste kirjeldamisel

Plasmonitel on oluline koht metallide optiliste omaduste kirjeldamisel. Valgus, mis jääb allapoole plasmavõnkumise sagedust, peegeldub, sest metallis olevad elektronid varjestavad valguse elektrivälja. Plasmavõnkumise sagedusest kõrgema sagedusega valgus läbib metalli, kuna elektronid ei suuda piisavalt kiiresti muutuvale elektriväljale reageerida. Enamikus metallides jääb plasma omavõnkesagedus ultravioletsesse piirkonda, seetõttu enamik metalle peegeldab valgust nähtavas piirkonnas (metallidele iseloomulik läige). Mõnes metallis, näiteks kullas ja vases[2] [3] , toimub elektronide ergastumine kõrgemale energianivoole nähtava valguse piirkonnas, kusjuures neelatakse diskreetse energiaga kvante. Sealt tuleb ka kulla ja vase iseloomulik värvus. Pooljuhtides on valentselektronide plasma sagedus kauges ultravioletses piirkonnas,[4][5] mistõttu nad peegeldavad nähtavat valgust.

Plasmonite energiat on võimalik vaba elektroni mudelis hinnata:

Ep=ωp=h2πωp=ne2mε0,

kus

Pinnaplasmonid

Pinnaplasmoniteks nimetatakse valgusega tugevas vastastikmõjus olevaid plasmoneid. Need tekivad kahe keskkonna kokkupuutepinnal, kus suhteline dielektriline läbitavus muudab märki, näiteks metalli ja dielektriku vahelisel pinnal. Pinnaplasmonitel on madalam energia kui ruumiplasmonitel ehk elektrongaasi pikivõnkumisel positiivsete tuumade suhtes. Sidestumisel footoniga tekib polariton. See levib mööda kahe keskkonna kokkupuutepinda, kuni selle energia neeldub või kiiratakse.

Pinnaplasmoneid ennustas kõige esimesena R. H. Ritchie 1957. aastal.[6] Paljud teadlased tegelesid järgnevatel aastakümnetel pinnaplasmonitega, neist silmapaistvamad olid Heinz Raether, E. Kretschmann ja A. Otto.

Ruumiplasmonid

Ruumiplasmonid on sarnaselt plasmonitega plasma võnkekvandid, ent esindavad uut võnkemoodi, mis kehtib üle terve ruumi.

Nende energia on[7]: EVp=ne2mε0=h2πωVpV=ωAYneV,

kus

  • h on Plancki konstant
  • on Plancki nurkkonstant
  • ωVp on ruumplasmonite võnkesagedus
  • ωA on plasmonite võnkesagedus
  • n on valentselektronide ruumtihedus
  • e on elementaarlaeng
  • m on elektroni mass
  • ε0 on vaakumi absoluutne dielektriline läbitavus.
  • V on ruumala
  • Yne on kvantolekute n ja e Le Garre polünoom.

Plasmonid nanoosakestes

Notre-Dame Pariisis. Värvid tulevad klaasis leiduvatest kulla osakestest

Eraldi võib vaadelda nanoosakestes lokaliseeritud pinnaplasmoneid. Piisavalt väikeste osakeste korral (läbimõõt on palju väiksem kui pealelangeva valguse lainepikkus) võib seda elektrostaatilises lähenduses vaadelda võnkuva dipoolina, mille dipoolmoment on:

p=4πε0εmR3εεmε+2εm,

kus

  • ε0 on vaakumi absoluutne dielektriline läbitavus
  • ε on levikmiskeskonna suhteline dielektrilineläbitavus
  • εm on metalli dielektrilineläbitavus
  • R on metallkuuli raadius.

Kuna metallides sõltub dielektriline läbitavus väga tugevalt elektromagnetvõnkumiste sagedusest, sõltub ka polarisatsiooni tugevus lainepikkusest. Eri sagedusega valgus hajub ja absorbeerub dipoolil seega ka erinevalt. Seda efekti kasutatakse pliiklaasis, mis annab klaasile erksa värvi.[8]

Pliiklaasist pärlid

Rakendusi

Plasmonlainete neeldumise ja emissioonide lainepikkus ja intensiivsus on mõjutatud molekulaarsest neeldumisest, seda saab kasutada molekulaarsete andurite valmistamisel. Näiteks on loodud seade, mis mõõdab kaseiini proteiini olemasolu piimas. See detekteerib valguse neeldumise muutusi kullakihis.[9] Metallist nanoosakestes lokaliseeritud pinnaplasmone saab kasutada molekulide, proteiinide jm kindlaksmääramiseks aines.

Kaalutakse plasmonite kasutamist infoedastajana mikrokiipides, kuna neid saab kasutada palju kõrgemate sageduste juures (ka 100 THz piirkonnas, samas kui tavaliste juhtmete kaod muutuvad juba kümnete GHz juures väga suureks). Selleks et rakendada plasmonitel põhinevat elektroonikat, tuleb kõigepealt luua plasmoonne transistori analoog, nn plasmonster.[10]

Plasmoneid on ka pakutud nende lühikese lainepikkuse tõttu ülipeene litograafia ja kõrge resolutsiooniga mikroskoopia rakendustes. Rakendusi on edukalt mõlemas valdkonnas katsetatud.

Plasmonid on väga tundlikud nende materjalide omaduste suhtes, milles nad liiguvad. Tänu sellele saab mõõta monomolekulaarsete kihtide paksust kolloidkilede peal. Tootjafirmad (nt. Rootsis paiknev bioteaduste firma Biacore) on toonud turule seadmeid, mis töötavad just sellisel põhimõttel.

Mikro- ja nanoelektroonika teadusuuringute keskuse IMEC[11] (Interuniversity Microelectronics Centre) juhitav töörühm on alustanud odavamate ja efektiivsemate päikesepaneelide väljatöötamist, keskendudes metalsetele nanostruktuuridele, mis peaks tänu plasmonefektidele parandama valguse neeldumist praegu kasutatavates eri tüüpi paneelides.[12]

Hiljuti on demonstreeritud uut meetodit plasmoonika abil värviliste hologrammide tekitamiseks.[13]

Viited

Mall:Viited

Välislingid

  1. Viitamistõrge: Vigane <ref>-silt. Viide nimega kwawi on ilma tekstita.
  2. Viitamistõrge: Vigane <ref>-silt. Viide nimega Sno3T on ilma tekstita.
  3. Viitamistõrge: Vigane <ref>-silt. Viide nimega KxfTR on ilma tekstita.
  4. Viitamistõrge: Vigane <ref>-silt. Viide nimega wiNqi on ilma tekstita.
  5. Viitamistõrge: Vigane <ref>-silt. Viide nimega kKwh3 on ilma tekstita.
  6. Viitamistõrge: Vigane <ref>-silt. Viide nimega NiMXE on ilma tekstita.
  7. Viitamistõrge: Vigane <ref>-silt. Viide nimega HG8wh on ilma tekstita.
  8. Viitamistõrge: Vigane <ref>-silt. Viide nimega Gu1VL on ilma tekstita.
  9. Viitamistõrge: Vigane <ref>-silt. Viide nimega UAkRt on ilma tekstita.
  10. Viitamistõrge: Vigane <ref>-silt. Viide nimega SEzhJ on ilma tekstita.
  11. Viitamistõrge: Vigane <ref>-silt. Viide nimega 7JiXk on ilma tekstita.
  12. Viitamistõrge: Vigane <ref>-silt. Viide nimega EGSh2 on ilma tekstita.
  13. Viitamistõrge: Vigane <ref>-silt. Viide nimega 8qD2l on ilma tekstita.